AFM-Raman-TERS

Glossary of Key Terminology

 

AFM Raman
Co-located confocal Raman microscope with an AFM tip enabling simultaneous acquisition of AFM and Raman spectroscopy images from the same location on the surface.
AFM Raman TERS
Collective name for high resolution Raman measurements including Raman confocal microscope integrated with SPM microscope and metalized TERS probe.
Graphene TERS
TERS has been successful in measuring the spectral characteristics of graphene with very high spatial resolution.
SERS
Surface enhanced Raman scattering (SERS).  A well-known Raman enhancing effect where a roughened metal surface can provide orders of magnitude increase in Raman signal intensity.
Conventional TERS probes
Typically Au or Ag metalized AFM probes or STM probes.
Strained Silicon TERS
ERS measurements on strained silicon substrate for TERS probes characterization in terms of the enhancement efficiency.
TERS AFM
Same as AFM Raman TERS
TERS
Tip enhanced Raman scattering (see TERS effect)
TERS Effect
enhancement of the Raman signal using the metalized AFM tip as the source for enhancement. By using such a small dia
meter tip, enhancement occurs only in the immediate vicinity of the tip providing a high spatial resolution for the Raman measurement.  TERS provides significant improvement in resolution over conventional AFM-Raman methods.
TERS Microscope
A microscope fitted with TERS equipment, including a lens (optical microscope), AFM head, TERS probes, Raman spectrometer, and CCD camera.
TERS Probes
Specialized probes suitable for AFM/TERS measurements.  A gold or silver ball at a variety of diameters is embedded at the end of a glass cantilevered probe to generate the enhancement of the Raman signal near the probe

Nanonics probes are extended and transparent allowing for all modes of TERS operation: Reflection, transmission and side illumination.

TERS Raman
As TERS stands for “Tip-Enhanced Raman Spectroscopy”, this term is redundant on its own, but used by searchers to specify this particular meaning of the term “TERS”.- It is the same as “TERS” or “TERS effect”
TERS Tips
same as TERS probes.
Reflection TERS
TERS measurements on opaque sample, when the SPM integrated with upright confocal Raman microscope. 
Transmission TERS
TERS measurements on transparent or half transparent  samples, when the SPM integrated with inverted confocal Raman microscope. 
Side illumination TERS
TERS measurements on opaque sample, when the SPM integrated with upright confocal Raman microscope, when the laser for Raman excitation  illuminates the sample by the 45˚-60˚ relatively to the axis of the TERS probe.    
 

 

 

Raman measurements are also possible in liquids, but they require the specialized liquid immersion objectives available on our systems.  Below is a Raman image of a Si/SiO2 grid immersed in liquid collected at 532nm.  The image on the right was collected using a 50x objective with an NA of 0.45, a typical optical objective used in an air environment.  The periodic grid features are poorly resolved.  On the left, the same grid was imaged with the water immersion optical objective clearly showing the grid features with excellent resolution.

 

Below is a short 15 minute video explaining the basics of AFM technology and feedback mechanisms:

 Back to top

 

Find the Scanning Probe Microscope that's right for you.

 

Explore the possibilities - today!

 

Great!

Let's set up a time to speak briefly about your unique SPM needs.

Thanks for visiting!

 

Just before you go...

 

Would you like to take a quick look at how you can improve your SPM results?