Wednesday, 23 April 2014 15:00

April 2014 Newsletter

 
 
 
logo

 
April 2014 - In This Issue:
NanoPhotonics Workshop in Boston in July
Focus on Probes: Nano ToolKit
User News: NSOM tips
Meet Nanonics team member: Dr. Danielle Honigstein
Near-field NanoPhotonics Workshop in Boston
July 21-22, 2014
 

Nanonics is pleased to announce the first Near-Field NanoPhotonics Workshop and a Multiprobe School. NSOM and MultiProbe NSOM have emerged as the premier tools in Photonics and Plasmonics characterization whether in silicon photonics, photonic band gap materials or plasmonic nanofocusing.  

 

We are proud to announce that Professor Federico Capasso of Harvard University will be a plenary speaker at this event.

 

This symposium is hosted by the laboratory of Professor Michael Naughton of Boston College's Physics Department and will focus on fundamental and applied developments in near-field optics as a confluence of imaging with super-resolution the amplitude and phase of the electromagnetic field correlated with 3D structure.  Nanonics users, who have been at the forefront of this rapidly growing field, will be featured and will present how they are using the near-field in defining new horizons in photonic nanocharacterization. The symposium will be followed by a hands-on near-field Multiprobe School.  

 

Monday July 21 will feature invited and contributed presentations as well as a poster session for students.

 

The Multiprobe School will convene on Tuesday, July 22 and will feature hands-on instruction dedicated to explaining and exploring the revolutionary multiprobe technology as applied to near-field NanoPhotonics.  All events will take place on the campus of Boston College.

 

Space is limited and early registration is advised.  Please check the symposium website (http://www.nanonics.co.il/company/news/near-field-nanophotonics-symposium-boston.html) or contact judy@nanonics.co.il for details.

 

 

Focus on probes:  NANONICS Nano Toolkit

 

 

Nanonics offers a nano-tool kit of glass based probes that enhances the functionality of the MultiView instrumentation series. Specially tailored for Nanonics instruments, these glass-based probes are fabricated and tested in-house and take advantage of over a decade's experience in manufacturing probes for sophisticated measurements.  Integrated into Nanonics MultiProbe systems, these probes provide a NanoWorkstation for sample characterization.

 

All Nanonics probes are:

  • optically friendly
  • work in both tuning fork and beam bounce feedback
  • multiprobe friendly
  • deep trench and other customizable geometries

Below we highlight some of Nanonics' unique SPM probes:

 

NSOM probes.  Apertured optical fiber probes for delivering and mapping light on the nanoscale.

The cantilevered, extended design provides a clear separation of the excitation and collection paths (see image on right) for true reflection NSOM imaging, while the waveguide characteristics makes for ideal collection mode NSOM.  With a Nanonics MultiProbe system, one probe can be used for excitation and the other for collection for a true near-field experiment.  

TERS probes.  Extended and transparent cantilever design allows for all modes of TERS operation:  reflection, transmission, and side illumination.  The TERS probe (see image below) is a high dielectric constant gold nanoparticle probe with a defined plasmon resonance, coming in a variety of diameters and is embedded at the end of a glass cantilevered probe. This design enables reliable operation on all substrates including non-conducting surfaces with no Raman background.

Raman probes. Transparent AFM probes from fused silica with no Raman background enable true reflection Raman without obscuring the optical path.  Allows for easy and accurate positioning.  These non-interfereing cantilevers are high and out of the optical focus of the tip.

Cantilevered glass micro electrodes with a sealed nano-wire ideal for for electrical, ion/electrochemistry and capacitance measurements.  The wire is completely sealed except at the apex critical for SECM and ion current measurements while the cantilevered design allows simultaneous topography to be measured.   True coaxial probes are available as well.
TERS probe
Thermal and Thermal conductivity probes.

Cantilevered Au/Pt microthermocouples for on-line thermal imaging. High sensitivity probes allowing for thermal, thermal conductivity and resistivity measurements.  

Nanolithography Probes.  Gas and chemical delivery NanoFountainTM Probes allow for writing a wide variety of materials on a large variety of surfaces.  The cantilevered glass pipettes have a reservoir for over a week of writing. 

Lensed fibers.  Specially designed lensed optical fibers couple light in or out of small devices such as microwaveguides, microlasers, microdetectors etc.  These fibers can be accurately designed by application need.   Coupled into the Nanonics Optometronic workstation, these fibers makes for the ideal photonics workstation.  

 

 

More details on all of our probes can find on our website or contact info@nanonics.co.il.

 

USER NEWS - NSOM tips as sources for azimuthally polarized light

  

German researchers report, for the first time, generation of azimuthually (z) polarized light from an NSOM fiber tip using Nanonics NSOM tips and a Nanonics Multiview 4000 system (see paper here) using both experiments and simulations. The ability of NSOM probes to generate z-polarized light has important applications in both near-field excitation and illumination protocols in nanophotonics and plasmonics. The generation of azimuthal polarization in the metal-coated fiber tip is attributed to Nanonics patented geometry of bent and tapered probe, symmetry breaking in the probe's bend and the tip's cone which acts as a plasmonic mode filter for selectively transmitting azimuthal and linear polarizationNanonics NSOM probes allow for significant customization, and so the researchersfurther improved the efficiency of the polarization modes by controlled FIB processing of NSOM tip apexes.

This study took advantage of the unique and flexible design of Nanonics probes to  provide important insights into understanding the true output of NSOM probes that will enable further understanding and manipulation of near-field effects.

 

 

SEM of NSOM tip (a). Colorized SEM of stepwise FIB cut-back to increase diameter (b) and polished tip apex (c)
Meet the Nanonics team!
This month we profile Dr. Danielle Honigstein.
Current position at Nanonics: Head of the software department.  In this role Danielle develops new software, continually upgrading the capabilities and features of Nanonics systems software.  She enjoys interacting with customers to learn about their needs and implementing them into the software.
Academic Background:  Danielle holds a Ph.D. in Applied Physics and a B.A. in Computer Science, all from Hebrew University of Jerusalem.
Family:  Danielle is married and has 3 children: 2 sons age 7 and 5 and a 1.5 year old daughter  
Hobbies:  fantasy books, singing, cooking
Fun Fact:  Danielle was born in Bangkok Thailand while her father was serving in the Israel Ministry of Foreign Affairs.  
Where are you presenting your research?
Please let us know where you are presenting and publishing your research and we will be happy to share the news!

          

 

Find the Scanning Probe Microscope that's right for you.

 

Explore the possibilities - today!

 

Great!

Let's set up a time to speak briefly about your unique SPM needs.

Thanks for visiting!

 

Just before you go...

 

Would you like to take a quick look at how you can improve your SPM results?